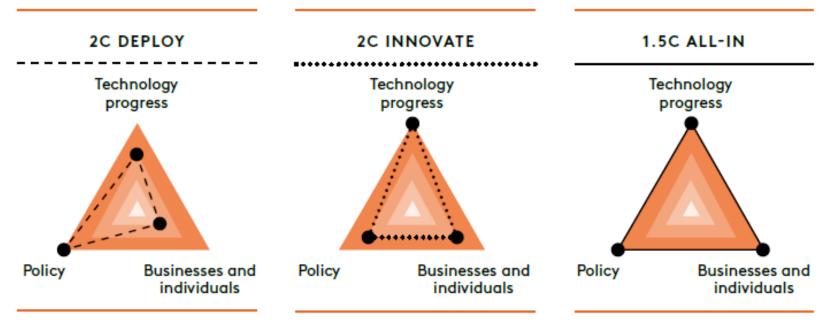
DECARBONISATION FUTURES

03 APRIL 2020


Anna Skarbek, CEO Amandine Denis-Ryan, Head of National Programs

DECARBONISATION FUTURES

Solutions, actions and benchmarks for a net zero emissions Australia


Overview of report findings

Decarbonisation Futures shows how the gap between Australia's climate commitment and implementation can be bridged

- + Reviews technologies available to reduce emissions, their progress and maturity
- + Identifies actions that government, businesses and individuals can take to support them
- + Provides benchmarks for the scale of uptake of the technologies to align with the Paris goals
- Via modelling three scenarios to illustrate possible pathways, with differing mix of levers

Net zero emissions by 2050 or earlier is fast becoming the norm in support of the Paris climate goals to limit global temperature rise to well below 2 degrees

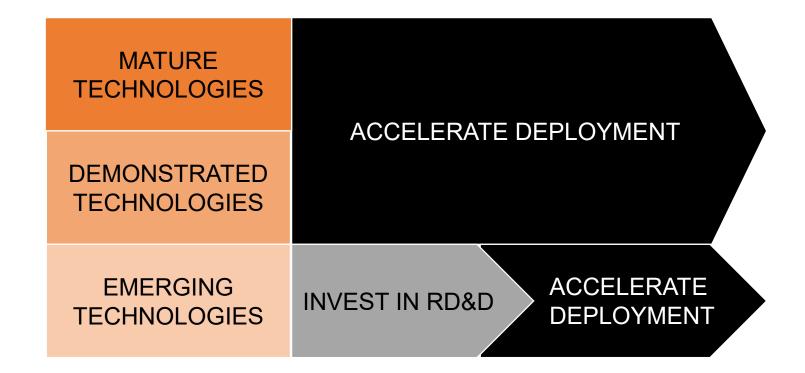
All 8 Australian states and territories have net zero targets in place

- * Aspiration

 NORTHERN TERRITORY

 NEW SOUTH WALES

 AUSTRALIA CAPITAL TERRITORY (CANBERRA)
- + 121 countries, covering 25% global emissions
- + Asset owners alliance worth US\$4 trillion
- Some of Australia's largest companies



To get there, Decarbonisation Futures shows Australia must immediately accelerate deployment of mature solutions, and invest in the rapid development and commercialisation of emerging solutions in harder-to-abate sectors

Critically, these actions can support efforts to rebuild from the shock of the Covid-19 pandemic.

- + Accelerate deployment of ready solutions
- + Create jobs in sustainable industries
- + Increase Australia's resilience
- + Set up for future economic growth
- + Decrease energy costs
- + Improve health outcomes

Example of readily deployable solutions include:

- Upgrades to existing residential and commercial buildings (energy efficiency, electrification, solar PV)
- Accelerated deployment of large scale renewables and storage
- + Construction of charging stations to support electric vehicles roll-out
- Nature based solutions including carbon forestry (silvopasture and dedicated)
- + Circular economy increased recycling and localised supply chains

Progress in the past five years has closed the technical gap making achieving zero emissions possible in all sectors

			DEMONSTRATED + MATURE SOLUTIONS	EMERGING SOLUTIONS	
		ELECTRICITY	100% renewables, storage (including batteries), demand management	There are sufficient demonstrated and mature solutions to decarbonise these	
		BUILDINGS	Deep energy efficiency, electrification	sectors. However, emerging solutions could decrease costs and aid deployment at scale.	
		TRANSPORT	Electric and fuel-cell vehicles for light road transport	Biofuels, synfuels, electrification, ammonia or hydrogen for other transport	
	A INDUSTRY		Energy efficiency, circular economy, proven electrification, bioenergy and bio-feedstocks, industrial CCS	Material substitution, high grade heat electrification, solar thermal, hydrogen	
	\$	AGRICULTURE + LAND	Sustainable agriculture practices, plant-based substitutes, fertiliser management, carbon forestry	Lab food, enteric fermentation treatments (such as livestock vaccines)	

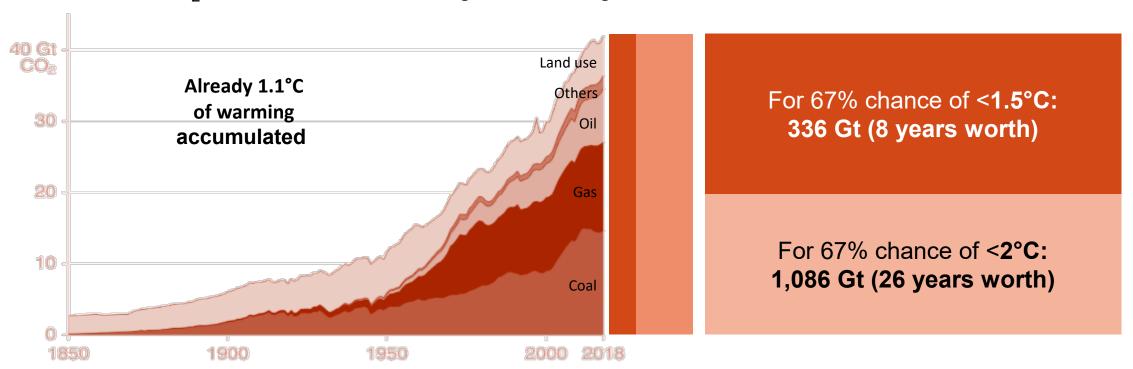
We have found that technology has achieved significant progress since 2014, often faster than was expected then

New renewables now cheaper than new fossil fuel generation

Battery costs per kilowatt-hour **80% cheaper** than in 2010

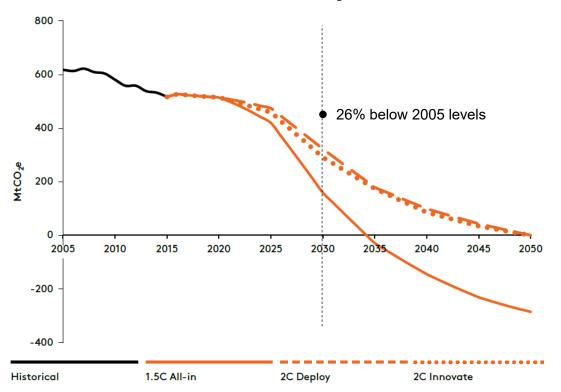
10-storey office tower built in timber in Brisbane

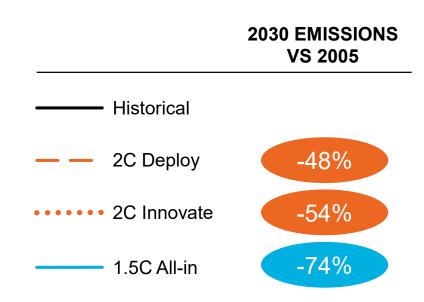
3 million EVs driven in the world


The **share price** of Beyond Meat grew more than 700% in the 3 months following its release

1- and 2-person **electric planes** are beginning to enter the market

Australia and the world have limited time to stay within the Paris Climate Agreement goals, but we are now well placed to leapfrog to zero emissions technologies in all sectors

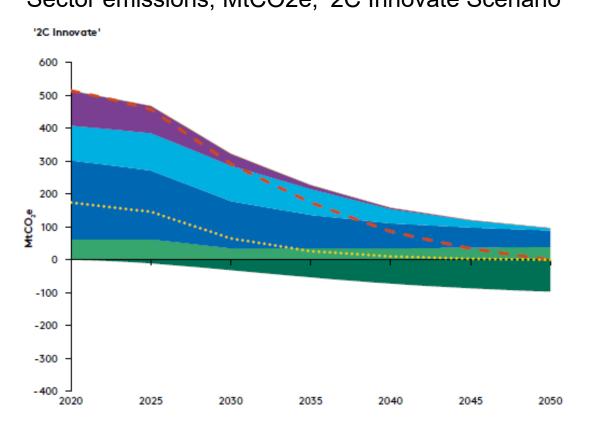

Global total CO₂ emissions and remaining carbon budget at 01/01/2020



SOURCE: IPCC, Global Warming of 1.5°C; Global Carbon Project (http://folk.uio.no/roberan/img/GCB2019/PNG/s85_2019_Total_Emissions_by_source.png)

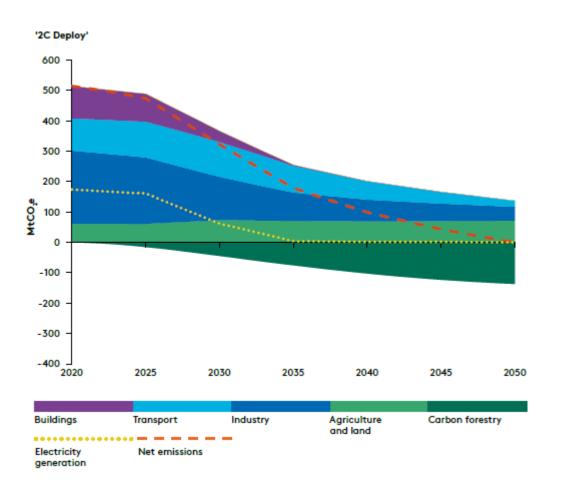
Our scenario analysis shows that increased support to technology deployment and development can support a trajectory compatible with the global 2°C climate goal

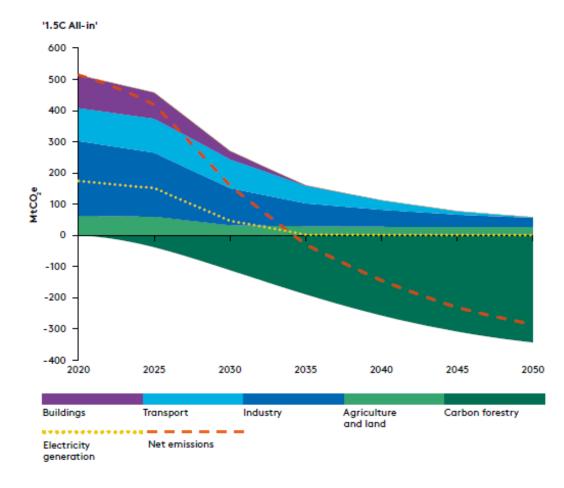
Australia's total emissions by scenario, MtCO2e



Note: All three scenarios assume typical economic conditions and so do not include possible structural changes to the Australian economy

All sectors can achieve very significant emissions reduction; the pace of reduction is aligned with technology maturity


Sector emissions, MtCO2e, '2C Innovate Scenario'



2030 2050 vs 2005 vs 2005 Electricity -65% -100% -67% -100% Buildings +1% -93% **Transport** Industry -41% -79% -44% -37% Land Carbon forestry Net emissions

EMISSIONS REDUCTIONS

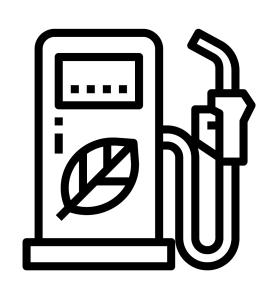
Across all scenarios, residual emissions in 2050 are 2-4 times lower than in our 2014 decarbonisation pathways

Some key similarities and differences exist between scenarios

Similarities

- + Electricity moves to 100% renewables by 2050 and helps decarbonise other sectors
- Much lower residual emissions than for 2014 scenario
- Electricity, buildings and transport get to zero or near zero emissions
- Industry and Agriculture have significant residual emissions

Differences


- + Net zero achieved by 2035 for '1.5C All-in'
- + Amount of residual emissions in 2050 (lowest for '1.5C All-in')
- Level of carbon forestry (balancing residual emissions, dependent on carbon budget)
- + Rate of retirement of coal-powered electricity generation, slowest in '2C Innovate'
- + Uptake in industrial CCS, dependent on policy
- + Agriculture emissions reductions, dependent on success of enteric fermentation treatments
- + Shift to lower emissions construction materials (highest in '1.5C All-in')

Widespread, rapid deployment of mature technologies can achieve much of what is needed this decade and can accelerate immediately

2030 scenario results	2°C	1.5°C	Government projections	
	EVs in new car sales	1 in 2	~3 in 4	~1 in 5
	% renewables in electricity generation	70-74%	79%	~48%

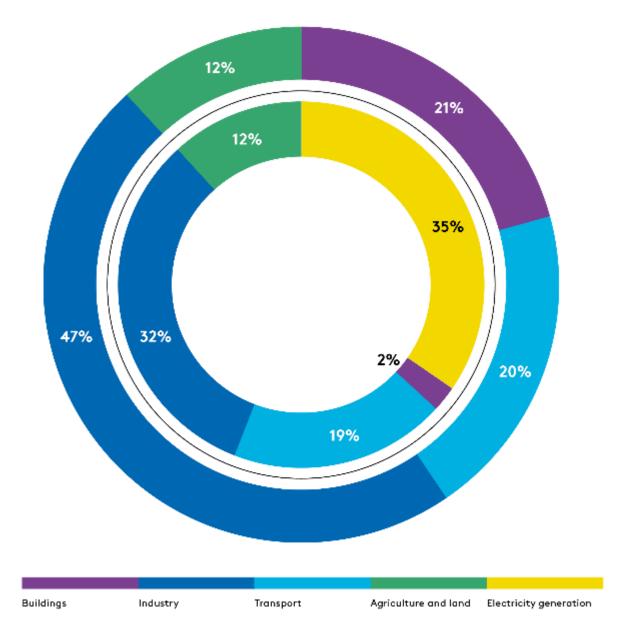
While substantial investment in research, development and commercialisation can close the gap to zero emissions across sectors.

The transition will not happen in time without strong action by government, business and individuals to support technology development, demonstration and deployment

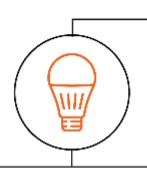
SOLUTION	ACTIONS					
STATUS		GOVERNMENT	BUSINESSES	INDIVIDUALS		
	rate deployment	Standards and targets	Targets on scope 1-3	Shift in consumption		
		 Taxes Financial support and/or	Forward asset	Shift in behaviour		
			replacement	Home upgrades		
MATURE		market structure amendments	Shift products and services	Shift in investments		
		•	New business models	Advocacy		
		Supporting infrastructure	Policy advocacy			
		 Information and accessibility 	Investors engagement			
	Accelerate	• Incentives	Pay price premium	Pay price premium		
		Procurement	Targeted procurement	Community investment		
DEMONSTRATION		Supporting infrastructure	Accept higher risk			
		Stimulate private investment				
	ri O	Investment in RD&D	Investment in RD&D			
EMERGING	est D&I	Incentives for private	Consortium for risk			
	<u>_</u>	investment	sharing			

This is the transformational decade

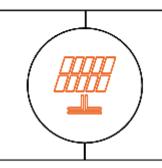
Research shows that the years before 2030 offer a window for action that will not stay open.


Е		100% renewables, storage (incl. batteries), demand management	-	G(OVERNMENT Standards & targets		SINESSES Targets	
MATURE		Deep energy efficiency, electrification	EPLOYMENT	+			Procurement Products & services	
DEMONSTRATED + N SOLUTIONS		Electric and fuel-cell vehicles for light road transport	E D	investment (such as	+			
		Energy efficiency, circular economy, proven electrification, bioenergy and bio-feedstocks, industrial CCS	CELERAT		co-investment or market design) + Information & access	INDI' + C pe	advocacy DIVIDUALS Consumption	
	4	Sustainable agriculture practices, plant-based substitutes, fertiliser management, carbon forestry	\ 				patterns Investments	
G 4S		Biofuels, synfuels, electrification, ammonia or hydrogen for other transport	D&D	G(OVERNMENT Direct investment	<u> </u>	T E	
EMERGING		Material substitution, high grade heat electrification, solar thermal, hydrogen	EST IN R	+ Incentivise private investment		CCELERATE		
	4	Lab food, enteric fermentation treatments (such as livestock vaccines)	INVEST	+ +	JSINESSES Direct investment	/	AC	

Australia's emissions are produced primarily by the electricity generation, industry and transport sectors

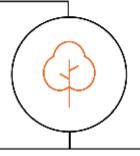

Australia's overall emissions by sector (2018).

Inside circle: excluding end use electricity, outside circle: including end use electricity

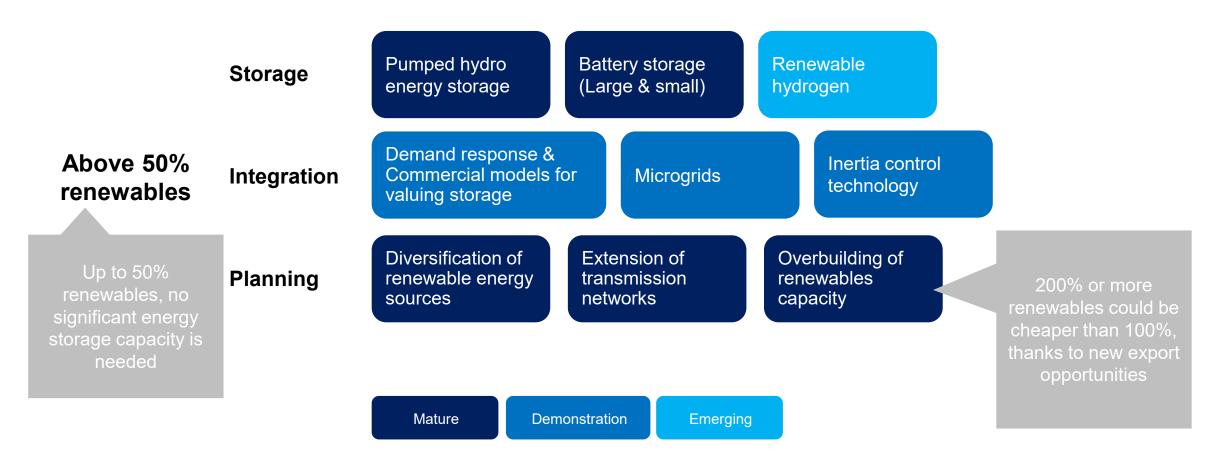


The achievement of net zero emissions relies on a shift from fossil fuel based energy to renewable energy across all sectors of the economy

THE FOUR PILLARS OF DECARBONISATION


Energy waste reduction, including through energy productivity and a shift away from energy-intensive products and services

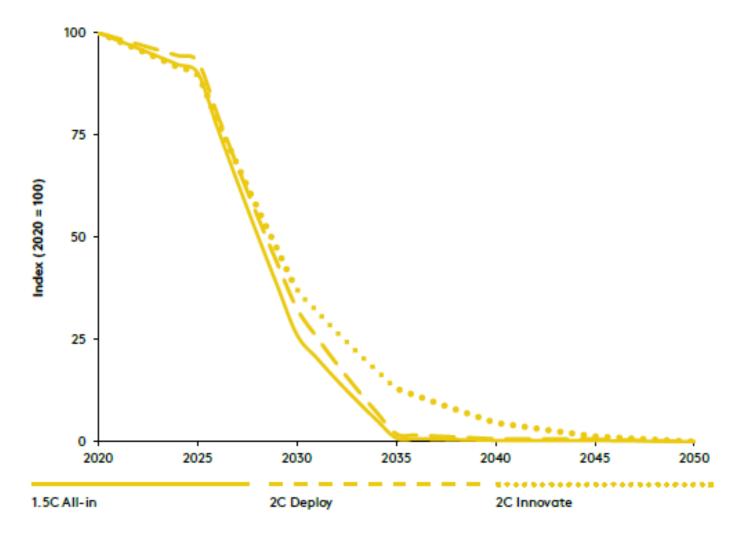
100% renewable electricity



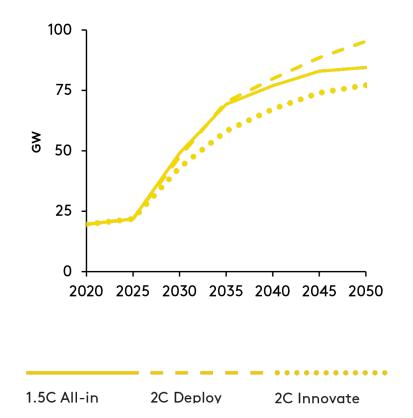
Electrification and a shift away from fossil fuels to zero – or near – zero emissions alternatives

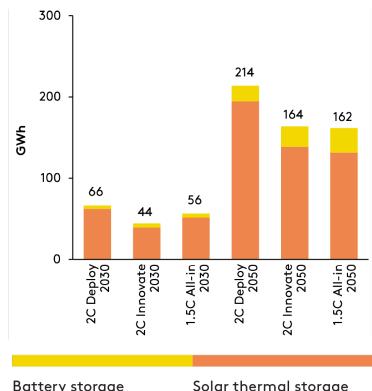
Non-energy emissions reductions and offsetting of residual emissions

Electricity: Technologies already exist which can support moving to 100% renewables


Electricity: All scenarios reach about 75% renewable electricity generation by 2030, and 100% by 2050. The key factor influencing the speed of the transition to renewable electricity is the rate at which coal generation (and then gas) exits the system.

Electricity generation by fuel type, TWh


Electricity: In the two scenarios with strong policy action, electricity reaches near zero emissions by 2035


Electricity emissions intensity in the modelled scenarios (2020-2050)

Electricity: Strong increases in storage capacity (battery, solar thermal and hydro) support the high volumes of renewables

Cumulative renewable electricity build, 2020-2050 (left), Storage capacity by type (right) in the modelled scenarios, 2030 & 2050

Electricity: CSIRO models the both the east- and west-coast electricity grids at a high degree of granularity

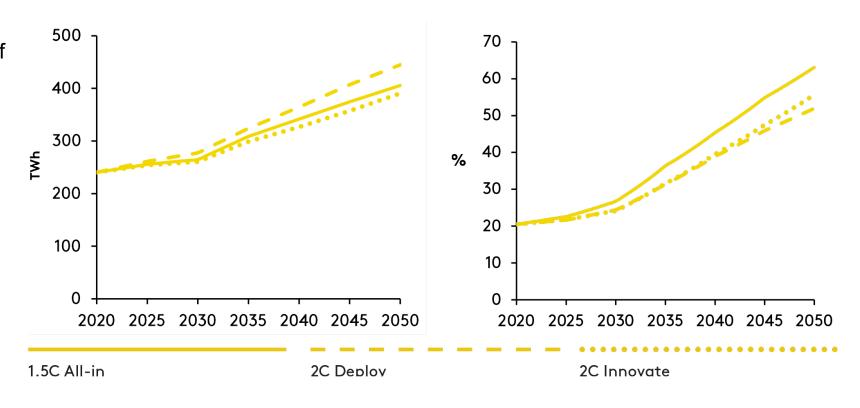
- + Includes: NEM (16 transmission zones), NWIS, SWIS, DKIS
- + For each zone: existing generation capacity, maximum renewable resources and renewable generation profile, access to CCS sites (when available)
- Unit-level data for existing thermal and hydro generation fleet

- Supply aggregated to meet a pool of demand for each state
- NEM trade through 6 interconnectors links between: NSW & QLD; NSW & VIC; VIC & SA; VIC & TAS
- + 16 time slices per year: seasonal, time of day

Many recent analyses have found that Australia's electricity system can be supported by 100%+ renewables

The Energy Transition Hub recently published a comprehensive analysis of possible futures for Australia's electricity system. They used 4 numerical energy-economic models from 5 partner institutes. They modelled 6 scenarios. They did an analysis of each hour of the Australian power system in 2050 for 2 scenarios.

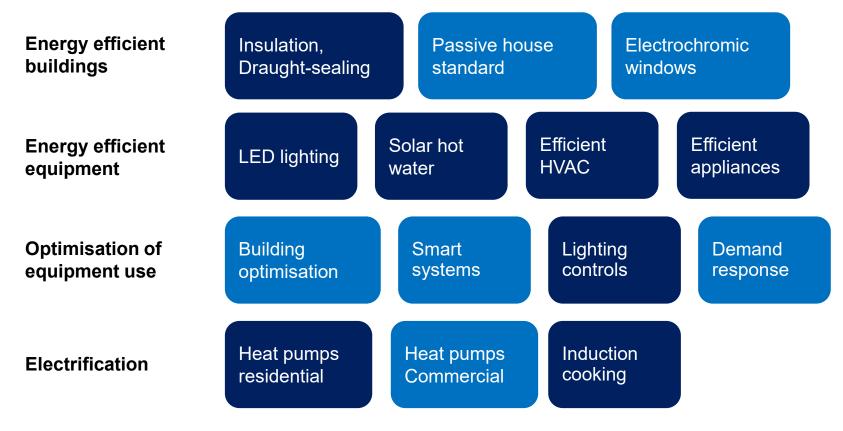
They found that:


- + Costs in a renewable-based system are similar or lower than today.
- Multiple options secure reliable supply from 100 percent renewables.
- Going beyond 200 percent renewables by producing more hydrogen further decreases the average system cost element

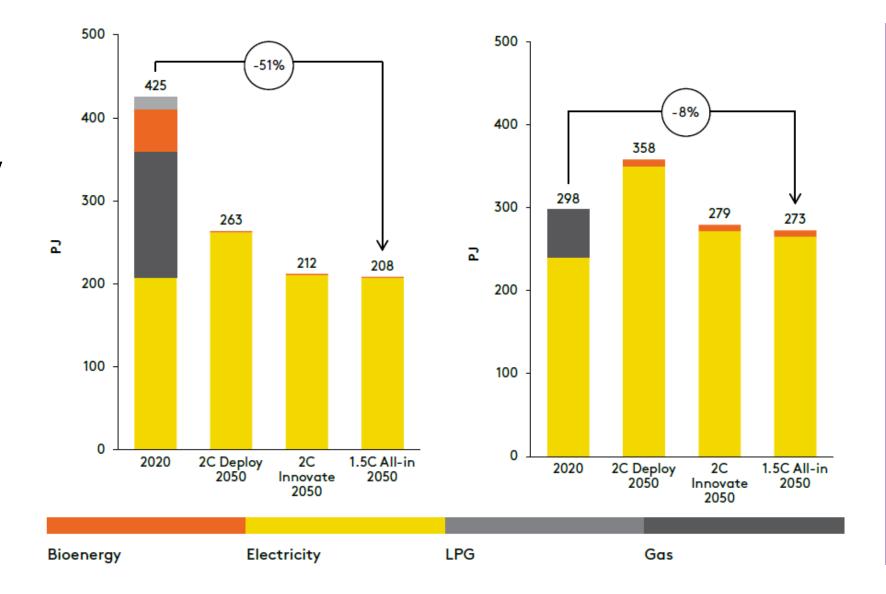
Recent work:

- + Energy Transition Hub , Australia's power advantage Energy transition and hydrogen export scenarios' https://www.energy-transition-hub.org/files/resource/attachment/australia_power_advantage_0.pdf
- Pumped hydro storage and 100% renewable electricity. Andrew Blakers, Bin Lu, Matt Stocks Australian National University https://arena.gov.au/assets/2017/08/AndrewBlakers
 Presentation.pdf
- Electricity Network Transformation Roadmap,
 CSIRO and ENA
 https://www.energynetworks.com.au/projects/electricity-network-transformation-roadmap/

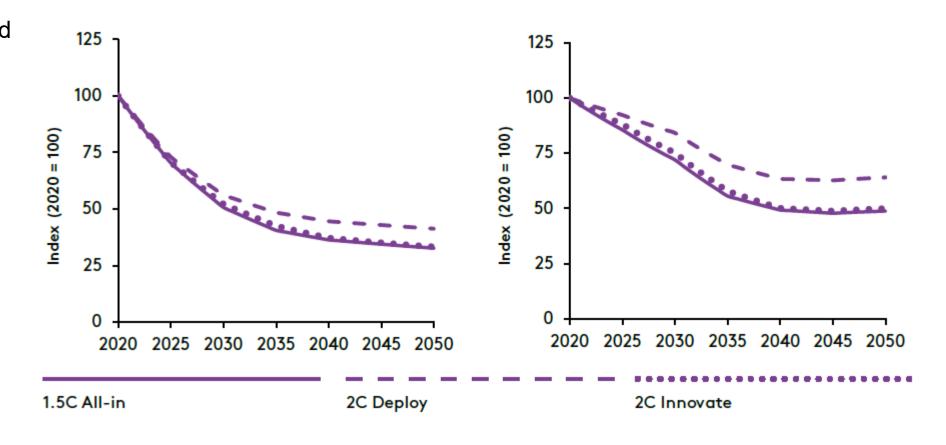
Electricity: Increased reliance on electricity across other sectors forms a major component of Australia's transition towards net zero emissions


Overall electricity demand (left) and as a proportion of final energy use (right) in the modelled scenarios (2020-2050)

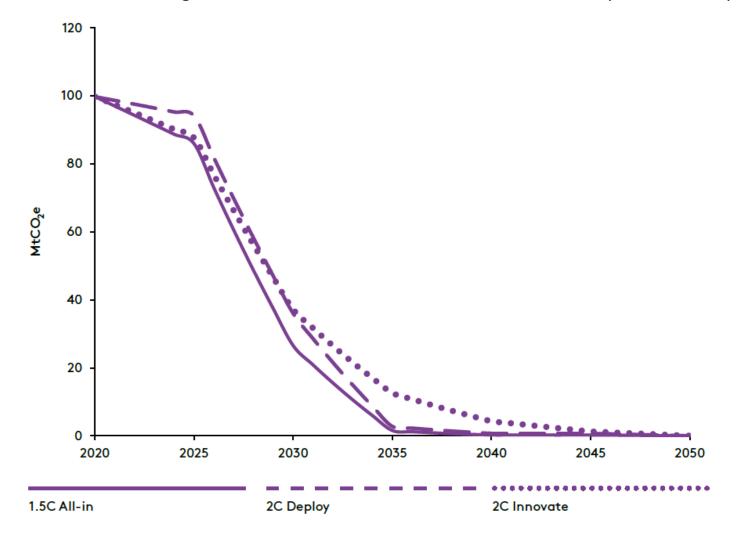
Benchmarks of progress towards net zero emissions by 2050


DENCHMARK	2C PAT	HWAYS	1.5C PATHWAY						
BENCHMARK	2030	CHANGE versus 2020	2030	CHANGE versus 2020					
TECHNOLOGY BENCHMARKS									
Share of renewable electricity generation	70-74%	2020 = 25%	79%	2020 = 25%					
Additional renewable capacity between 2020 and 2030		24-28 GW added		29 GW added					
Additional storage capacity between 2020 and 2030		44-66 GWh added		56 GWh added					
ENERGY BENCHMARKS									
Share of electricity in total energy	24%	2020 = 20%	27%	2020 = 20%					
EMISSIONS BENCHMARKS									
Annual emissions	62-65 MtCO ₂ e	63-64% decrease	46 MtCO ₂ e	73% decrease					
Emissions intensity	220-252 tCO ₂ e/ GWh	63-67% decrease	177 tCO ₂ e/GWh	74% decrease					

Buildings: The technology required for a zero-emissions building sector – deep energy efficiency and electrification powered by renewables – is already available to be deployed


Buildings: Zero-emissions buildings combine energy efficiency with electrification

Residential (left) and commercial (right) buildings energy use in the modelled scenarios, by fuel type (2020-2050)


Buildings: Energy efficiency improvements and electrification drive lower energy intensity in all scenarios

Residential (left) and commercial (right) buildings energy intensity in the modelled scenarios (2020-2050)

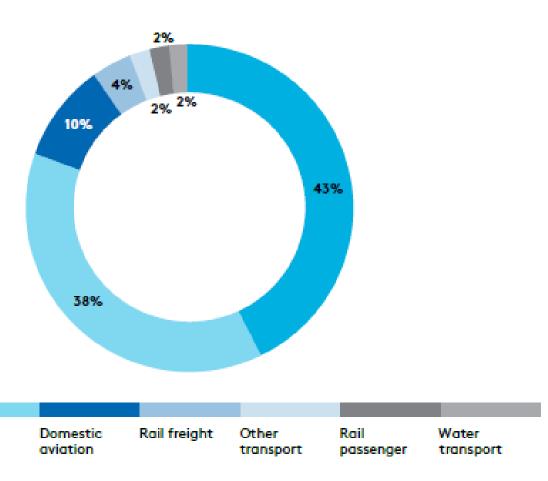
Buildings: The emissions trajectory of the building sector is strongly linked to the transition to renewable electricity generation

Overall buildings emissions in the modelled scenarios (2020-2050)

Benchmarks of progress towards net zero emissions by 2050

BENCHMARK	2C PAT	HWAYS	1.5C PATHWAY					
BENCHMARK	2030	CHANGE versus 2020	2030	CHANGE versus 2020				
TECHNOLOGY BENCHMARKS								
Rooftop solar electricity generation	22-26 TWh	85-116% increase	26 TWh	116% increase				
ENERGY BENCHMARKS								
Residential building energy intensity		44-48% decrease (improvement)		49% decrease (improvement)				
Commercial building energy intensity		16-25% decrease (improvement)		28% decrease (improvement)				
Share of electricity in residential buildings	76-78%	2020 = 49%	75 %¹	2020 = 49%				
EMISSIONS BENCHMARKS								
Annual emissions	36-37 MtCO ₂ e	63-64% decrease	27 MtCO ₂ e	73% decrease				

Transport: The majority of Australia's transport emissions come from road transport


Road

freight

Road

passenger

Australia's transport emissions shares by subsector (2018)

Transport: Short-term efforts can focus on improving travel and energy efficiency, and increasing the use of biofuels, while technology progresses for zero-emissions solutions

Optimise travel needs

Mode shift (active, rail, lighter vehicles)

Videoconferencing Logistics, warehouse location

Autonomous vehicles

Improve efficiency

Vehicle design improvement

Route optimisation

Improved fleet maintenance

Eco-driving

Electrify (battery or fuel cell)

Cars & buses

Road freight

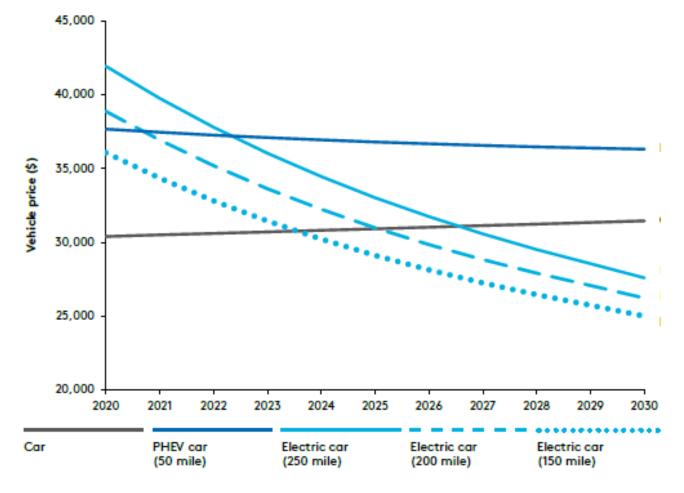
Rail freight

Short-haul shipping

Short-haul aviation

Use alternative fuels

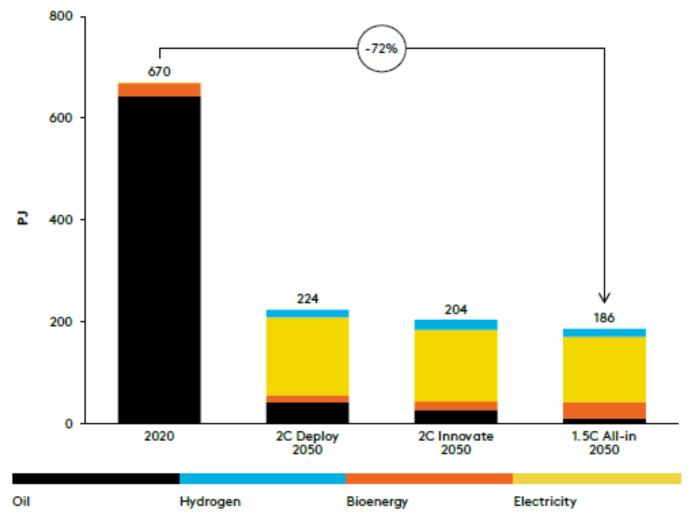
Biofuels (1st generation) – limited scale


Biofuels (2nd and 3rd generation)

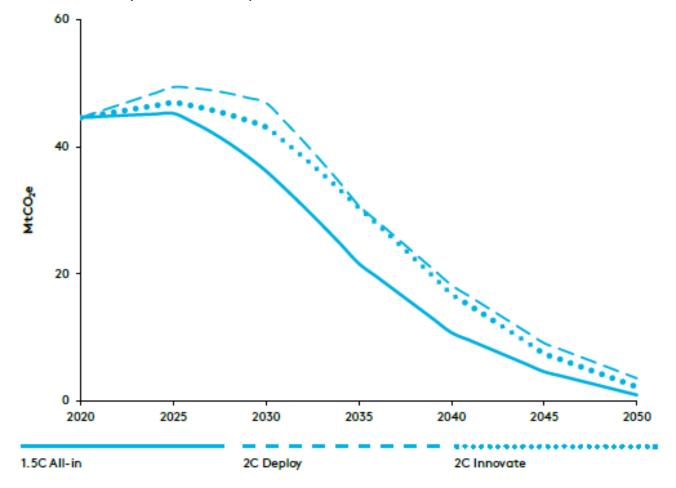
Renewable hydrogen

Renewable ammonia

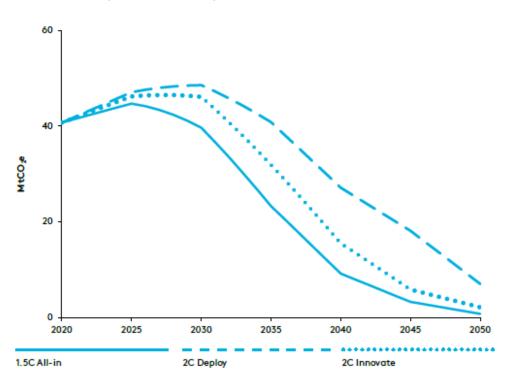
Light road transport:
Within the next
decade, electric
vehicles are
expected to become
cost-competitive
with, or cheaper
than, conventional
vehicles


Initial purchase price of conventional vehicles and electric vehicles for cars showing the crossover point in comparative vehicle purchase price (2020-2030)

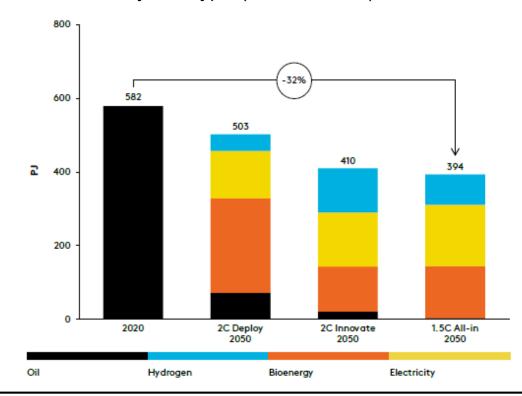
Source: ICCT (2019)


Light road transport: The high uptake of electric vehicles charged with renewable electricity has the potential to drive road passenger transport close to zero emissions

Road passenger transport energy use in the modelled scenarios, by fuel type (2020 & 2050)

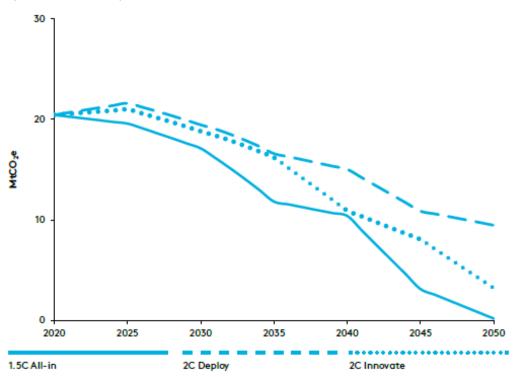

Light road transport: Emissions decrease accelerates after 2030. This reflects the delay between electric vehicles becoming cost-competitive (around 2025) and uptake in new vehicle sales

Road passenger transport emissions in the modelled scenarios (2020-2050)

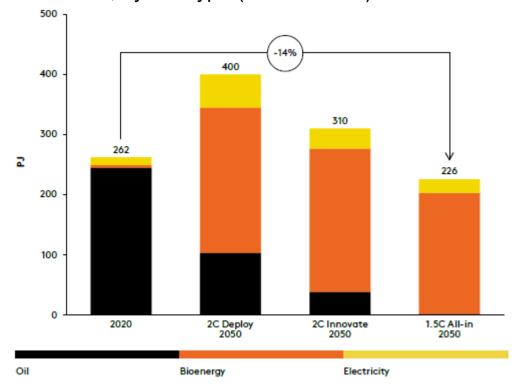


Heavy road transport: Technological developments and policy support could help reach near zero emissions in 2050 through shifts to renewable electricity, bioenergy and hydrogen

Road freight transport emissions in the modelled scenarios (2020-2050)

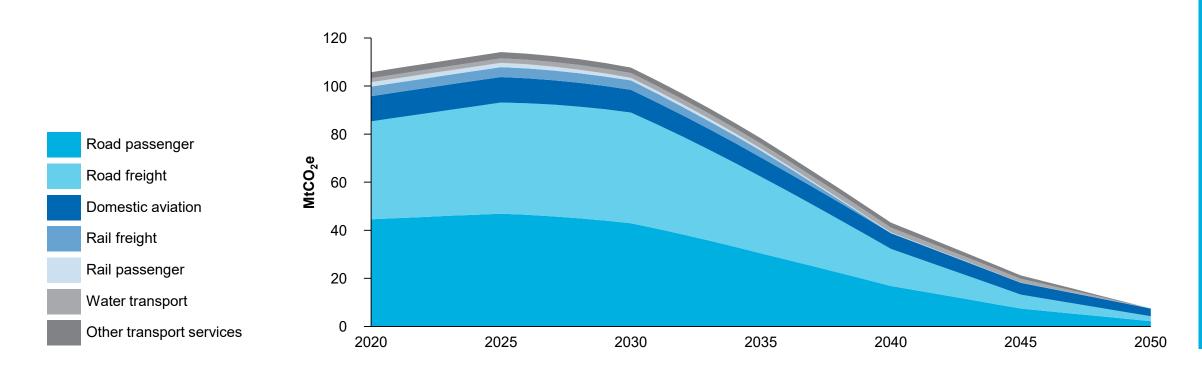


Road freight transport energy use in the modelled scenarios, by fuel type (2020 & 2050)



Non-road transport: Energy-efficiency improvements, renewable fuel cost reductions and demand shift can help significantly reduce emissions in aviation and shipping

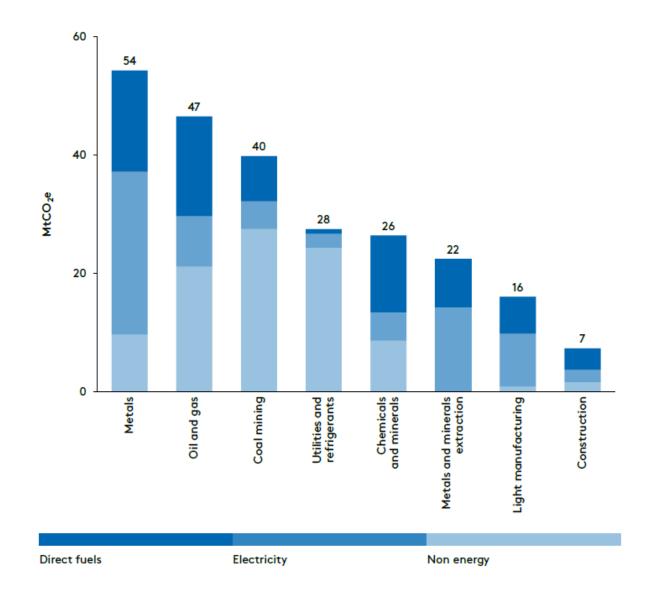
Non-road transport emissions in the modelled scenarios (2020-2050)



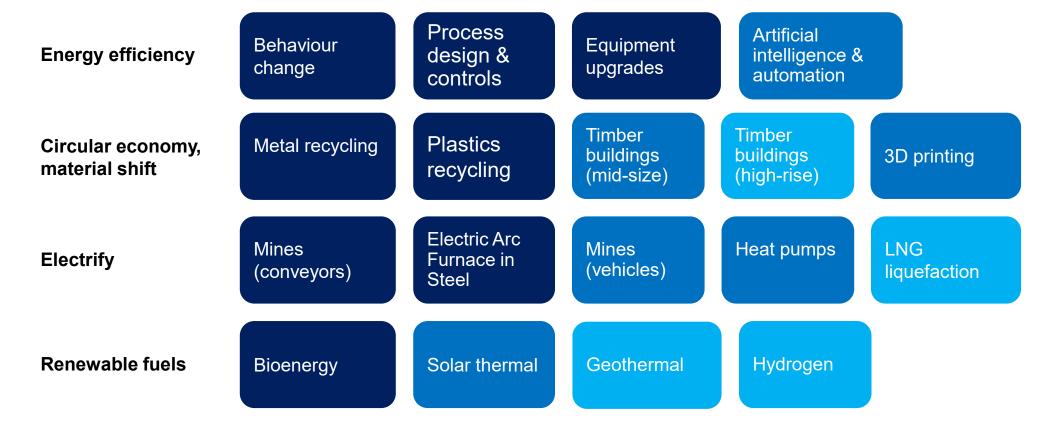
Non-road transport energy use in the modelled scenarios, by fuel type (2020 & 2050)

Transport: It is possible to achieve near zero emissions by 2050

Transport emissions by subsector, MtCO2e, '2C Innovate' scenario

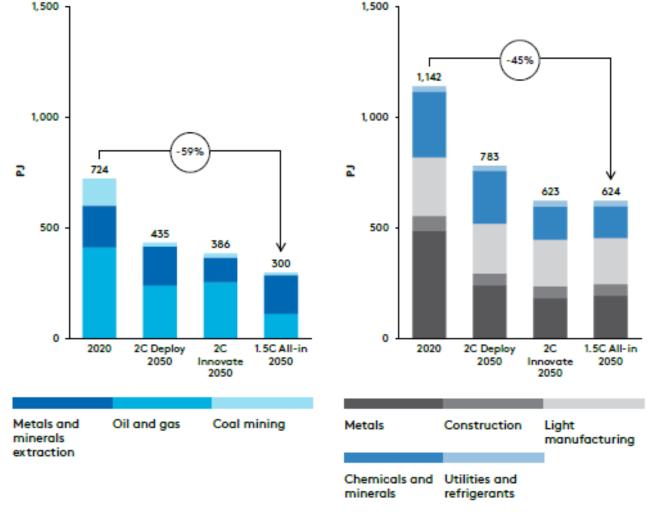


Benchmarks of progress towards net zero emissions by 2050

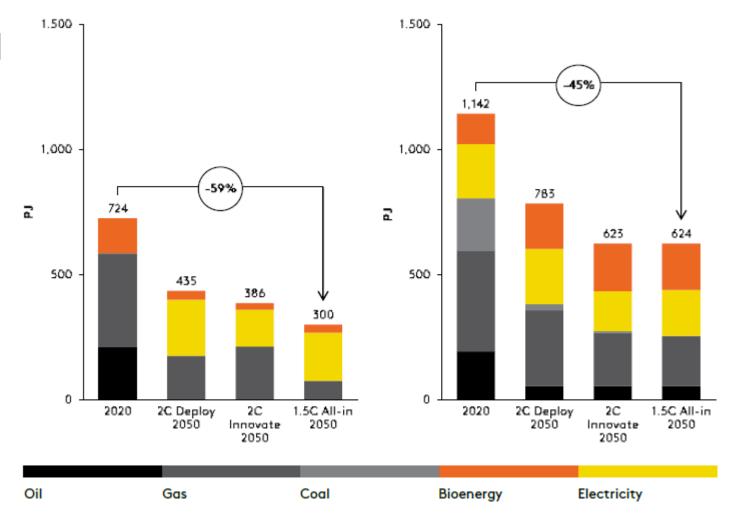

BENCHMARK	2C PATHWAYS		1.5C PATHWAY			
BENCHMARK	2030	CHANGE versus 2020	2030	CHANGE versus 2020		
TECHNOLOGY BENCHMARKS						
Electric cars (battery electric vehicles and fuel cell electric vehicles)	50% of new-car sales, 15% of total fleet	2020 = <1% of sales and total fleet	76% of new-car sales, 28% of total fleet	2020 = <1% of sales and total fleet		
Electric trucks (battery electric vehicles and fuel cell electric vehicles)	25-39% of new-truck sales, 8-13% of total fleet	2020 = <1% of sales and total fleet	59% of new- truck sales, 24% of total fleet	2020 = <1% of sales and total fleet		
Volume of zero-emissions fuels (bioenergy and hydrogen)	83-111 PJ	171-265% increase	134 PJ	338% increase		
ENERGY BENCHMARKS						
Share of electricity and zero-emissions fuels in total transport energy use	9-11%	2020 = 3%	16%	2020 = 3%		
Share of electricity and zero-emissions fuels in road passenger and freight energy use	5-9%	2020 = 2%	17%	2020 = 2%		
Fossil fuel use in non-road transport	226-233 PJ	5-8% decrease	203 PJ	17% decrease		
EMISSIONS BENCHMARKS						
Total transport emissions	108-115 MtCO ₂ e	2-9% increase ¹	93 MtCO ₂ e	12% decrease		
+ Road transport emissions	89-95 MtCO ₂ e	5-12% increase²	76 MtCO₂e	11% decrease		
+ Other transport emissions	18.8-19.5 MtCO ₂ e	5-8% decrease	17 MtCO ₂ e	16% decrease		

Industry: Industry produces nearly half of Australia's emissions, with a significant proportion from non-energy sources

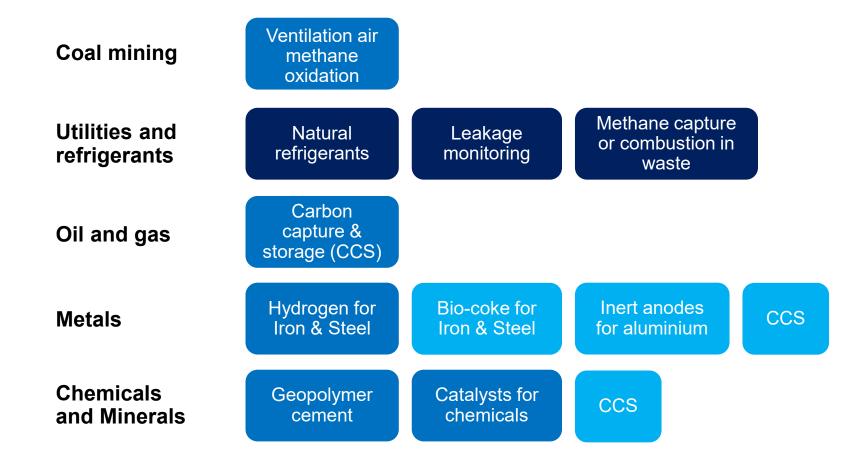
Industrial emissions by subsector and emissions type, MtCO2e, 2018 (estimated)



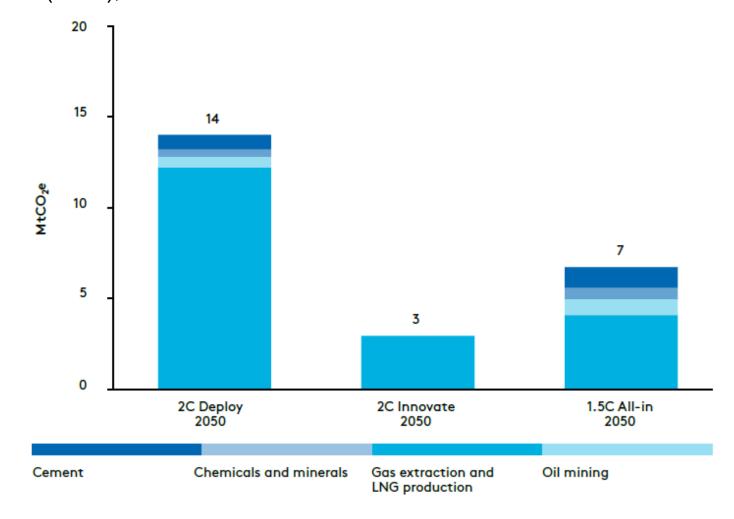
Industry: A number of technologies are ready to be deployed at scale to reduce energy emissions, in particular increased energy efficiency and recycling


Industry: Improvements in energy and material efficiency, combined with the uptake of other circular economy principles, drives significant energy use reductions

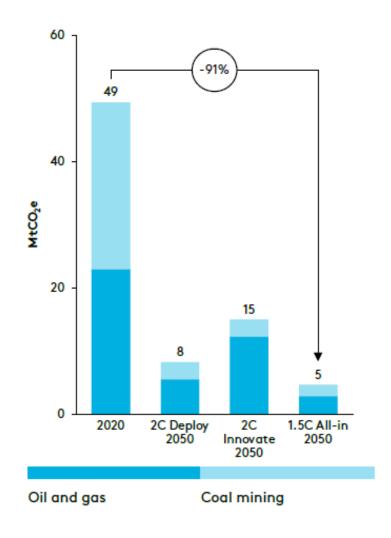
Mining (left) and manufacturing and other industry (right) energy use in the modelled scenarios, by subsector (2020 & 2050)

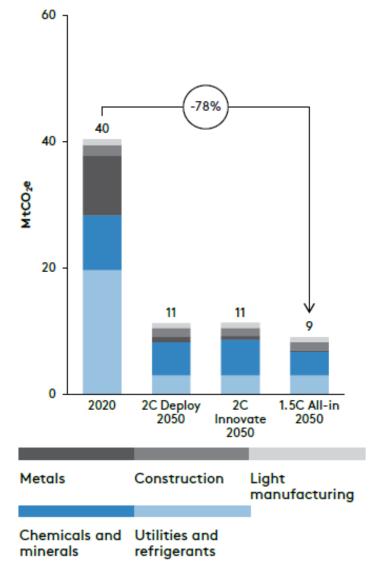

Industry: Electrification and fuel switching could help most industrial processes achieve zero emissions by 2050

Mining (left) and manufacturing and other industry (right) energy use in the modelled scenarios, by fuel type (2020 & 2050)

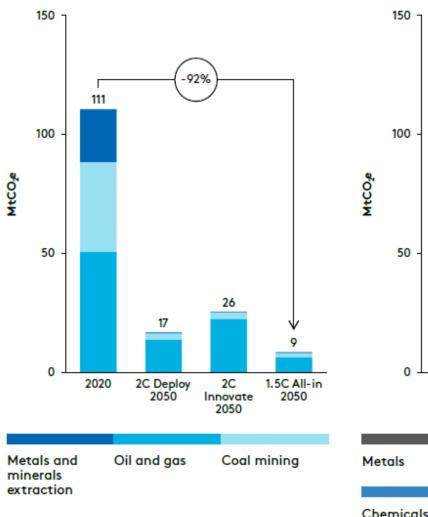

Note: hydrogen is not modelled yet in industry, but could be substituted in future as a zero emissions fuel

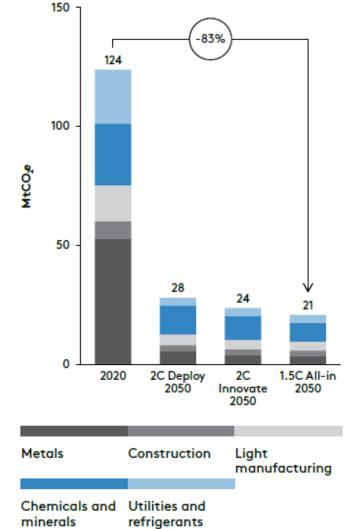
Industry: Further targeted solutions to reduce process and fugitive emissions can be developed and deployed


Industry:
Carbon capture
and storage (CCS)
is likely to play
a key role in oil
and gas


Industry carbon capture and storage in the modelled scenarios (2050), MtCO2e

Industry: There is potential to significantly reduce non-energy emissions in key sectors

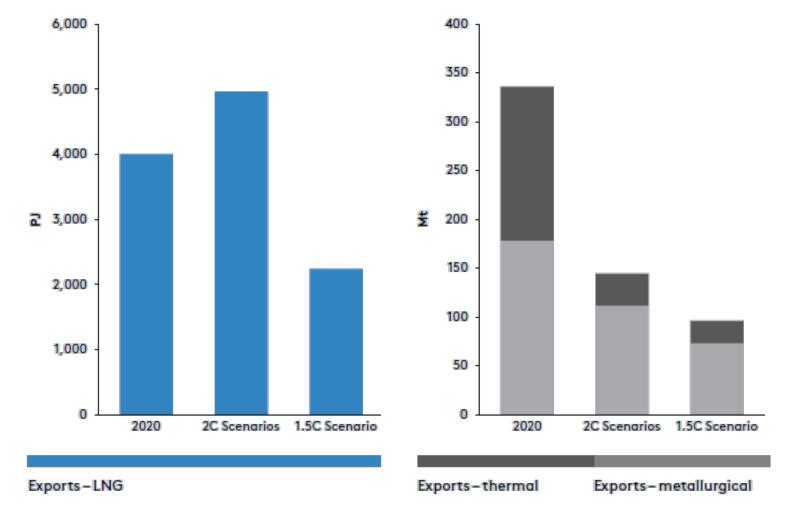

Mining (left) and manufacturing and other industry (right) non-energy emissions in the modelled scenarios, by subsector (2020 & 2050)



Industry: Significant residual emissions subsist in 2050, demonstrating the size of the technical challenge

Mining (left) and manufacturing and other industry (right) total emissions in the modelled scenarios, by subsector (2020 & 2050)

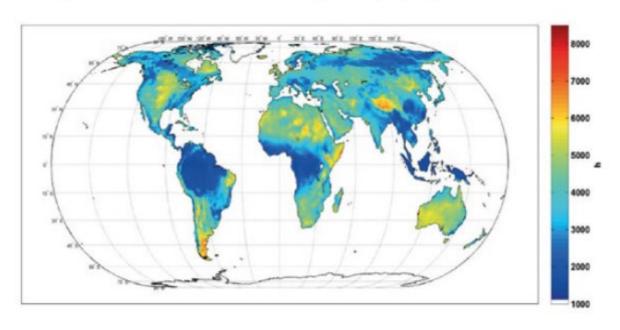
Industry: Substantial emissions reductions are achieved for industry in all scenarios, but significant challenges remain to achieve zero emissions by 2050


Challenges to achieve zero emissions by 2050 include:

- Eliminating non-energy emissions in the chemicals and continued LNG production and export sectors
- + Eliminating residual emissions from subsectors that use **fossil fuel as a feedstock** rather than a fuel
- + Shifting away from fossil fuel-based energy exports towards renewable energy exports

Industry: Based on international scenarios, Australian gas and coal exports would decline significantly by 2050 under 1.5 degrees

Australian exports of gas (left) and coal (right) in the modelled scenarios (2050)



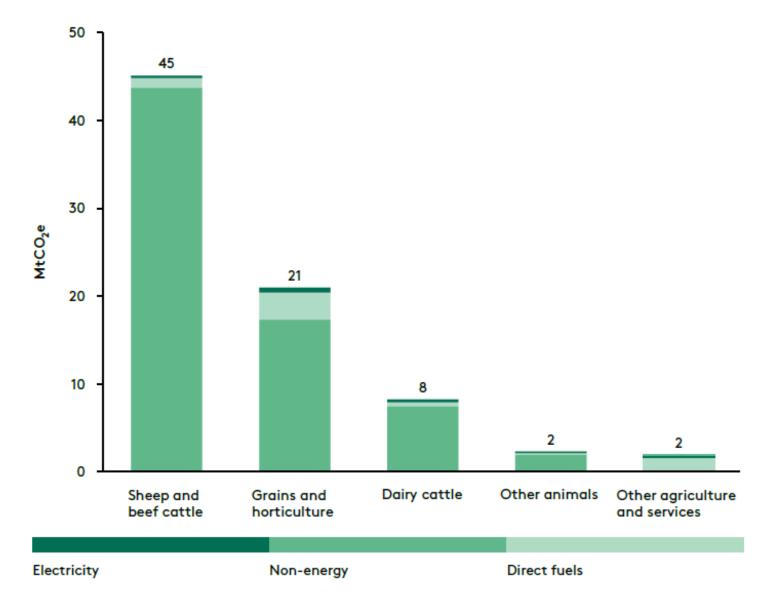
Industry: Decarbonising our supply chains comes with a unique set of opportunities

Australia is well-positioned with:

- + Abundant mineral and energy resources
- World-class renewable energy resources (identified by the ETC)
- + Project finance capability
- Engineering capability
- Existing trade relationships and proximity to Asian markets

Availability of wind and solar resources differ significantly by region

Source: IEA (2017), Renewable Energy for Industry (Adapted and based on Fasihi, Bogdanov and Breyer (2016), Techno-Economic Assessment of Power-to-Liquids (PtL) Fuels Production and Global Trading Based on Hybrid PV-Wind Power Plants)


Source: Energy Transitions Commission 2019, Mission Possible

Benchmarks of progress towards net zero emissions by 2050

DENIGUNA DIC	2C PATHWAYS		1.5C PATHWAY		
BENCHMARK	2030	CHANGE versus 2020	2030	CHANGE versus 2020	
TECHNOLOGY BENCHMAR	RKS				
Share of electricity in energy used for steel production	16-20%	2020 = 11%	27%	2020 = 11%	
% clinker in cement	45-75%	2020 = 75%	15%	2020 = 75%	
Share of new large buildings built using timber	7-20%	2020 = negligible	20%	2020 = negligible	
ENERGY BENCHMARKS					
Total energy use	1684-1785 PJ	4-10% decrease	1580 PJ	15% decrease	
Share of electricity and zero-emissions fuels in total energy use	30-32%	2020 = 25%	33%	2020 = 25%	
EMISSIONS BENCHMARKS					
Total industry emissions	141 MtCO ₂ e	40% decrease	120 MtCO ₂ e	49% decrease	
+ Extractive sectors emissions	67-71 MtCO ₂ e	36-39% decrease	56 MtCO ₂ e	49% decrease	
+ Manufacturing and other sectors emissions	70-74 MtCO ₂ e	40-43% decrease	63 MtCO₂e	49% decrease	

Agriculture: Nonenergy emissions represent the vast majority of emissions

Agriculture emissions by subsector and emissions type (2018)

Agriculture: Sustainable agricultural practices can be implemented today to reduce emissions, while more investment in RD&D will be required to achieve zero-emissions

Energy

Sustainable agriculture practices, energy efficient equipment

Precision agriculture, automation

Onsite renewables

Electric machinery

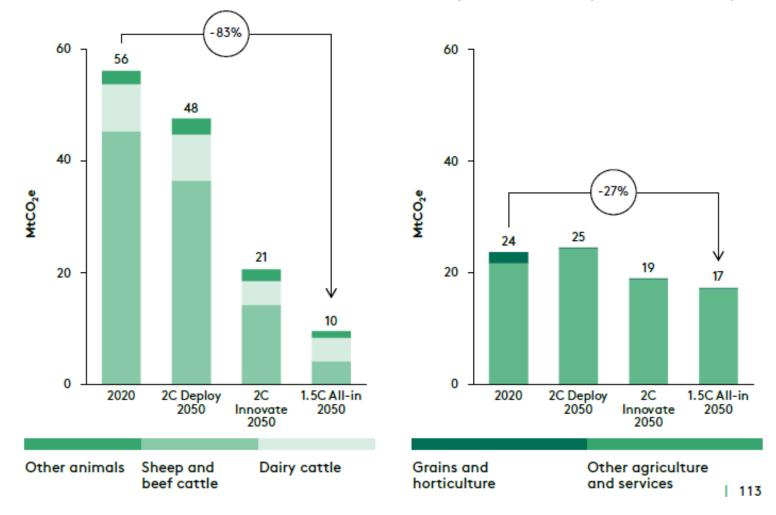
Non-energy - livestock

Product substitutes: plant-based

Product substitutes: Laboratory grown meat

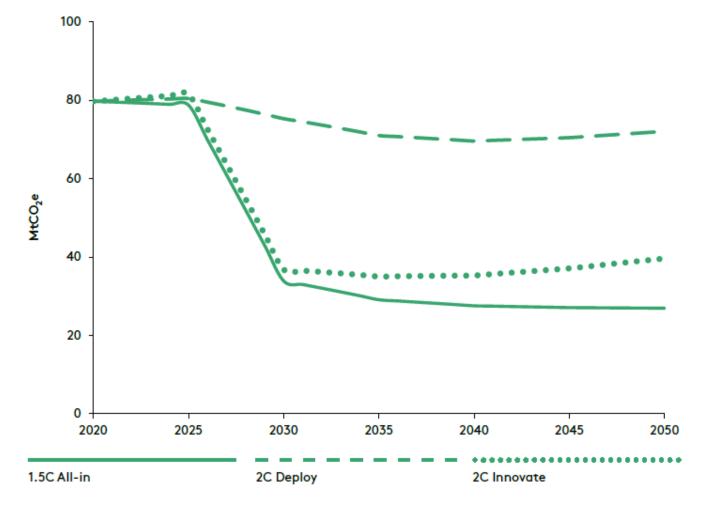
Breeding, feeding & pasture practices (step change)

Manure management Antimethane vaccines


Non-energy - grains & horticulture

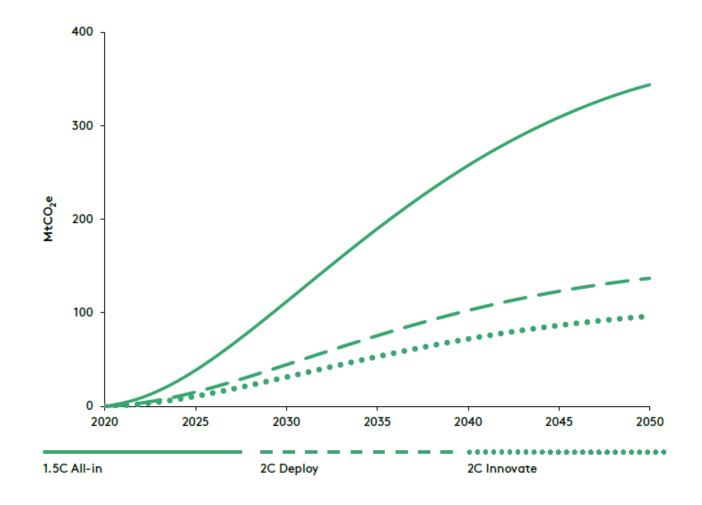
Precision agriculture, fertiliser management

Soil carbon sequestration


Agriculture: Technological breakthroughs and behaviour change can significantly reduce livestock emissions by 2050, but challenges such as non-energy emissions from grains and horticulture production must also be addressed

Livestock (left) and grains, horticulture and other agriculture (right) emissions in the modelled scenarios, by subsector (2020 & 2050)

Agriculture:
Significant residual
emissions remain
by 2050 across all
our scenarios


Overall agriculture emissions in the modelled scenarios (2020-2050)

Forestry: Australia's ample carbon forestry potential can help achieve net zero emissions in the medium term

- Not all emerging zero emissions solutions could be modelled
- Carbon forestry was used to fill the gap
- + It represents the size of the RD&D effort required

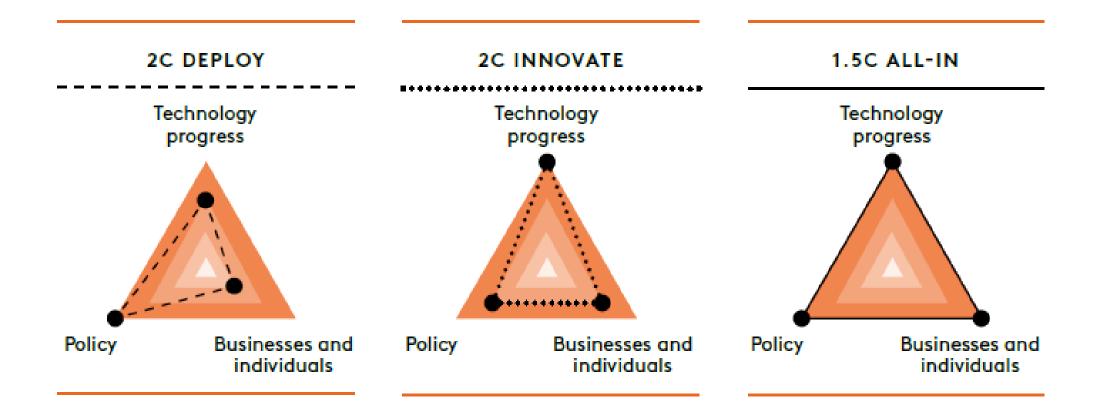
Carbon forestry sequestration in the modelled scenarios (2020-2050)

Forestry: Nature-based solutions such as carbon forestry will continue to play a role in Australia – although they can only be a temporary solution on a pathway to zero emissions

Carbon forestry:

- + Is vulnerable to bushfires, drought and heatwaves
- + Requires long lead times
- + Requires significant areas of land
- + Competes against other land use needs
- Increases water use
- + Poses threats on biodiversity
- Will need new parcels of land to be reforested to offset new emissions

Benchmarks of progress towards net zero emissions by 2050


BENCHMARK	2C PATHWAYS		1.5C PATHWAY	
	2030	CHANGE versus 2020	2030	CHANGE versus 2020
TECHNOLOGY BENCHMAR	RKS			
Carbon forestry	~ 5 Mha plantings		~ 8 Mha plantings	
EMISSIONS BENCHMARKS				
Agriculture and land emissions	37-75 MtCO ₂ e	6-54% decrease	34 MtCO ₂ e	57% decrease
+ Livestock emissions	19-53 MtCO ₂ e	5-66% decrease	18 MtCO ₂ e	69% decrease
+ Other agriculture emissions	18-22 MtCO ₂ e	7-24% decrease	16 MtCO ₂ e	31% decrease
+ Carbon forestry sequestration	31-45 MtCO ₂ e sequestration		112 MtCO ₂ e sequestration	

OUR SCENARIOS

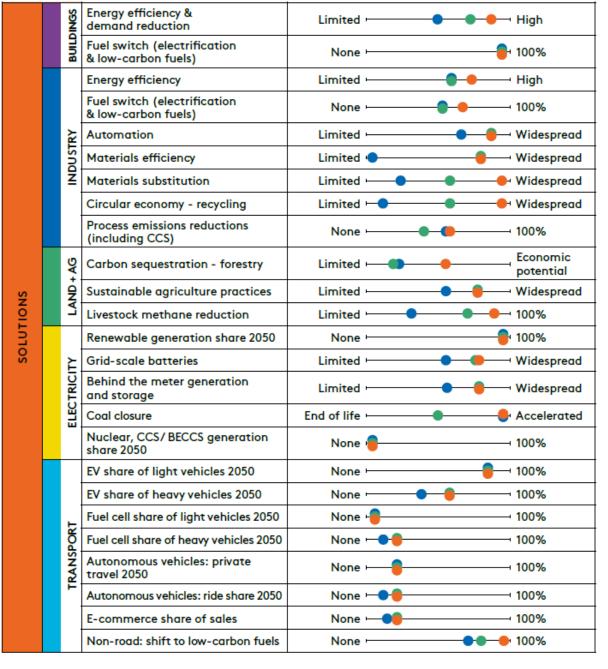
We used the CCA methodology to calculate an updated Australian carbon budget for 1.5 and 2 degrees

CLIMATE GOAL	CARBON BUDGET, AS OF 01/01/2020	EQUIVALENT TO X YEARS AT CURRENT EMISSIONS LEVELS	REQUIRES NET ZERO BY		
GLOBAL PERSPECTIVE					
2°C, 67% chance	1,086 GtCO ₂	26 years	~2070		
1.5°C, 50% chance	496 GtCO₂	12 years	~2050		
1.5°C, 67% chance	336 GtCO ₂	8 years	~2050		
AUSTRALIAN PERSPECTIVE®					
2°C, 67% chance	11.1 GtCO ₂ e	21 years	~2050		
1.5°C, 50% chance	4.1 GtCO₂e	7.6 years	~2035		
1.5°C, 67% chance	2.1 GtCO₂e	4.0 years	~2035 (with overshoot)		

Decarbonisation Futures uses scenarios to explore a range of possible low-emissions futures for Australia

Scenario assumptions – Overall context

2C Deploy2C Innovate1.5C All-in


	Population growth	Low growth -	High growth
	GDP growth	Low growth	High growth
	Climate ambition	6 degrees	■ 1.5 degrees
CONTEXT	Trajectory	Insufficient -	Rapid decline
NO	Transition from fossil fuels	Limited -	
ŭ	Policy	Weak action	Strong action
	Business/individual actions	Weak action -	Strong action
	Technology progress (technology cost reductions)	Limited -	High

Scenario assumptions – Solutions

2C Deploy

2C Innovate

1.5C All-in

Our scenario analysis provides technology uptake...

BENCHMARK	2°C PATHWAYS		1.5°C PATHWAY	
DENCHMARK	2030	CHANGE versus 2020	2030	CHANGE versus 2020
Emissions intensity	220-252 tCO ₂ e/ GWh	63-67% decrease	177 tCO ₂ e/GWh	74% decrease
Share of renewable electricity generation	70-74%	2020 = 25%	79%	2020 = 25%
Additional renewable capacity between 2020 and 2030		24-28 GW added		29 GW added
Additional storage capacity between 2020 and 2030		44-66 GWh added		56 GWh added
Rooftop solar electricity generation	22-26 TWh	85-116% increase	26 TWh	116% increase
Electric cars (battery electric vehicles and fuel cell electric vehicles)	50% of new car sales, 15% of total fleet	2020 = <1% of sales and total fleet	76% of new car sales, 28% of total fleet	2020 = <1% of sales and total fleet
Electric trucks (battery electric vehicles and fuel cell electric vehicles)	25-39% of new truck sales, 8-13% of total fleet	2020 = <1% of sales and total fleet	59% of new truck sales, 24% of total fleet	2020 = <1% of sales and total fleet
Volume of zero emissions fuels (bioenergy and hydrogen)	83-111 PJ	171-265% increase	134 PJ	338% increase
Share of electricity in energy used for steel production	16-20%	2020 = 11%	27%	2020 = 11%
% clinker in cement	45-75%	2020 = 75%	15%	2020 = 75%
Share of new large buildings built using timber	7%-20%	2020 = negligible	20%	2020 = negligible
Carbon forestry	~ 5 Mha plantings		~ 8 Mha plantings	

... as well as energy and emissions measures

ENERGY					
BENCHMARK	2°C PATHWAYS		1.5°C PATHWAY		
	2030	CHANGE versus 2020	2030	CHANGE versus 2020	
Total final energy use		3-8% decrease		16% decrease	
Share of electricity and zero-emissions fuels in final energy use	31-32%	2020 = 23%	35%	2020 = 23%	
Share of electricity in total energy	24%	2020 = 20%	27%	2020 = 20%	
Residential building energy intensity ^s		44-48% decrease (improvement)		49% decrease (improvement)	
Commercial building energy intensity ⁶		16-25% decrease (improvement)		28% decrease (improvement)	
Share of electricity in residential buildings	76-78%	2020 = 49%	75%7	2020 = 49%	
Share of electricity and zero-emissions fuels in transport energy	9-11%	2020 = 3%	16%	2020 = 3%	
Share of electricity and zero-emissions fuels in road energy use	5-9%	2020 = 2%	17%	2020 = 2%	
Fossil fuel use in non-road transport	226-233 PJ	5-8% decrease	203 PJ	17% decrease	
Total energy use	1684-1785 PJ	4-10% decrease	1580 PJ	15% decrease	
Share of electricity and zero-emissions fuels in total energy use	30-32%	2020 = 25%	33%	2020 = 25%	

EMISSIONS					
BENCHMARK	2°C PATHWAYS		1.5°C PATHWAY		
DENCHMARK	2030	CHANGE versus 2020	2030	CHANGE versus 2020	
Net annual emissions	291-322 MtCO ₂ e	37-43% decrease ¹	159 MtCO ₂ e	69% decrease ²	
Electricity emissions	62-65 MtCO ₂ e	63-64% decrease	46 MtCO ₂ e	73% decrease	
Buildings emissions	36-37 MtCO ₂ e	63-64% decrease	27 MtCO ₂ e	73% decrease	
Total transport emissions	108-115 MtCO ₂ e	2-9% increase ³	93 MtCO ₂ e	12% decrease	
+ Road transport emissions	89-95 MtCO ₂ e	5-12% increase4	76 MtCO ₂ e	11% decrease	
+ Other transport emissions	18.8-19.5 MtCO ₂ e	5-8% decrease	17 MtCO ₂ e	16% decrease	
Total industry emissions	141 MtCO ₂ e	40% decrease	120 MtCO₂e	49% decrease	
+ Extractive sectors emissions	67-71 MtCO ₂ e	36-39% decrease	56 MtCO ₂ e	49% decrease	
+ Manufacturing and other sectors emissions	70-74 MtCO ₂ e	40-43% decrease	63 MtCO ₂ e	49% decrease	
Agriculture and land emissions	37-75 MtCO ₂ e	6-54% decrease	34 MtCO ₂ e	57% decrease	
+ Livestock emissions	19-53 MtCO ₂ e	5-66% decrease	18 MtCO ₂ e	69% decrease	
+ Other agriculture emissions	18-22 MtCO ₂ e	7-24% decrease	16 MtCO ₂ e	31% decrease	
+ Carbon forestry sequestration	31-45 MtCO ₂ e sequestration		112 MtCO ₂ e sequestration		

Thank you. Please contact us for more information.

AMANDINE DENIS-RYAN //

Head of National Programs Amandine.denis@climateworksaustralia.org 0434 138 220

TOM YANKOS //

Senior Project Manager Tom.yankos@climateworksaustralia.org 0456 393 516

CLIMATEWORKS AUSTRALIA

Level 27, 35 Collins Street Melbourne Victoria 3000

+61 3 99020741 // info@climateworksaustralia.org

www.climateworksaustralia.org

MONASH SUSTAINABLE DEVELOPMENT INSTITUTE

ClimateWorks Australia was co-founded by Monash University and The Myer Foundation and works within the Monash Sustainable Development Institute